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Error Bounds for Compound Quadrature of Weakly 
Singular Integrals 

By Alan Feldstein* and Richard K. Miller** 

Abstract. This paper studies the convergence of numerical quadratures of singular 
integrands. The singularities are ignored in the sense that whenever a singularity occurs 
the integrand is redefined to be zero. Several convergence theorems are proved under the 
assumption that the integrand can be dominated near each singularity by a monotone, 
integrable function. 

1. Introduction. The primary purpose of this paper is to develop and analyze 
some practical numerical methods for handling weakly singular quadrature, that is, 
for f f(t) dt where f is Lebesgue integrable on I (so-called "improper integrals"). We 
also extend this development and analysis to the case where some derivative of f is 
Lebesgue integrable and has finitely many unbounded points on L We shall be 
particularly interested in obtaining "best" possible order estimates for compound 
quadratures. 

It is known (although possibly not well known) that Peano's theorem can be 
applied to analyze the error in "low continuity" numerical quadrature, for example, 
fTt112dt approximated by the trapezoidal rule: 

Let h > 0, Nh = T, E(T) = error. Then 

T 

E(T) = t1/2 dt - h h + V2h + * + \(N 1- )h + VNhI 

By Peano's theorem, cf. e.g. Sard [1, p. 14], 
T 

E(T) = f t- /2K(t) dt, 

where K(t) = (j + ')h - t on jh ? t < (j + 1)h. Apply the H6lder inequality with 
i/p + l/q = 1 and 1 _ q < 2: 

I E(T)I 1 {jT 1- 1 
dt} J TK(t)I Idt} 
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(Clearly, C 1/ I2 is integrable for 1 ? q < 2.) Now, use the definition of K(t): 

T rh h/2 

I K(t) I"dt =N J h/2 - t|lPdt = 2NJ tv dt 

= (2N/(p + 1))(h/2)+1' (hN/(p + 1))(h/2)' 

= { T/(p + 1) } (h/2)*. 

Therefore, I Kj IP = { T/(p + 1)1 I `(h/2). Since 
T 

It It2 I" dt = {2/(2 - q)} T , 

then 

IE(T) I (h/4){ T/(p + 1)} "'1 { 2/(2 - q) I/aT11Q- /2 

= T2(p + 1)1/v{2/(2- q)- (h14) 

One could proceed further and analyze the constant 

k(q) = (p + I)-1/v{2/(2 - q)}1/a 

subject to I/p + l/q = 1, 1 ? q < 2. One can conclude (by very tedious manipula- 
tions) that k(q), for 1 g q < 2, takes on its minimum at q = 1. In this case, k(l) = 2. 
Hence, the minimum estimate on IE(T)I by this application of the H6lder inequality 
to Peano's theorem is 

IE(T)j < (V\Th)/2 (h = T/N). 

Although this estimate is optimal (in the above sense), it is overly pessimistic, because 
one can show that E(T) = O(h312). This can be seen in Example 2 in Section 3 below. 
Indeed, with a little extra care, one can sharpen the result in Example 2 to show that 

6 -3/2 E(T) < + a (h = TI N. 

This then clearly demonstrates that applying the H6lder inequality to Peano's theorem 
may possibly yield substantially less information than is desirable. 

In Section 2, we shall show how Peano's theorem and the H6lder inequality can 
be applied in general to singular quadrature questions. In particular, we generalize 
the first type of analysis presented above for f It"2dt where E(T) = 0(h). In Section 3, 
we shall refine our analysis to obtain better information. In particular, we generalize 
the second type of analysis alluded to above for the case f 't"2dt where E(T) = 0(h3/2). 

The drawbacks for the usual H6lder-Peano approach become even more exag- 
gerated for ft- "/2dt where the integrand itself has a weak singularity. Since the 
hypothesis of Peano's theorem requires absolute continuity and since f(t) = t-(12 is 
not even continuous at zero, Peano's theorem cannot be applied directly. In Section 4, 
we show how this situation can be remedied. We propose a simple modification of 
the usual compound quadrature rule which we call the method of "avoiding the 
singularity." We then establish general error bounds along with convergence rates 
for this numerical quadrature of weakly singular integrands. 

The use of Peano's theorem to obtain error estimates for quadrature of functions 
with low continuity is known. For example, Stroud [2] has recently studied certain 
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aspects of this method. Numerical quadrature of singular functions has also been 
studied. Davis and Rabinowitz [3] establish various convergence theorems with 
interesting lim inf results which were extended by Rabinowitz [4]. Gautschi [5] applied 
some of the work of Rabinowitz and obtained convergence theorems for two 
quadratures of interpolatory type. In none of these papers are error bounds explicitly 
given, although, for example, the proofs in [2] may be used to obtain certain estimates 
(see [2, line (3.7)], and the proof of Theorem 3). All of these results require that the 
integrand be monotone in a neighborhood of the singularity. Fox [6] gives some 
error bounds for singular quadratures. His work is very special and does not seem 
to generalize. 

The main results of this paper predict rather slow convergence rates for weakly 
singular numerical quadratures. Various numerical experiments verify these predic- 
tions. Moreover, there may be no advantage in using a better rule (e.g. Simpson rather 
than trapezoid); see [7, p. 77] for a striking example of this. If one knows enough 
about the integrand, it may be possible to change variables or otherwise to eliminate 
the singularity; see for example [7, pp. 72-73] or [8, pp. 346-352]. In other cases, one 
might wish to use special numerical quadrature methods which are specifically 
designed for particular singular integrands. Two examples of such methods are 
given in Atkinson [9, Sections 2.1 and 2.2] and Schweikert [10]. 

In Section 5, we apply our results of the earlier sections to the question of singular 
quadrature in the convolution case. This work in particular will be used in its full 
generality by the authors in a sequel paper which studies numerical solution of 
weakly singular Volterra integral equations of the form 

rt 
x(t) = f(t) + a(t - s)G(x(s)) ds (O ? t < T) 

where f and G are smooth but a(t) may be singular at t = 0; (a(t) = C 

2. Basic Estimates. Consider an approximate quadrature rule defined on the 
standard interval, 0 < t < 1: 

Jr 

(R) R(f) =E w3f(x), 
i-o 

with error 

E(f, R) f f(t) dt - R(f 

It will always be assumed that the abscissas xi satisfy the inequalities 0 < 

xO < x1 < * * * < XJ < 1. In addition, we shall assume some or all of the following 
hypotheses in the sequel: 

(Al) f - C" 1[09 1] where n ? 1 is a fixed integer and f(n- 1) is absolutely continuous 
on 0 ? t ? 1. 

(A2) E(p, R) = 0 for all polynomials p(t) of degree < n - 1. 
(A3) The weights wj are positive for j = 0())J. 
(A4) f E Cn1 [0, T] and f n`l) is absolutely continuous on [0, 71. 
The symbol j = O(l)J means j = 0, 1, 2, , J. The integer n ? 1 in hypotheses 

(Al) and (A2) has the same fixed value. 
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For any subinterval I of the real line, let xl(t) denote the characteristic function 
of the interval I, that is 

X1(t) = 1 if t E I, 

=o if t E1I. 

For our purposes, the following special case of Peano's theorem will suffice; cf. 
[1, p. 14]. 

THEOREM 1. Assume the rule (R) together with hypotheses (Al) and (A2). Define 

f.(t) = (t -s)ff-lxjo ,.(t)1(n - 1)! 

for 0 _ s, t < 1 where n is the integer given in (Al)-(A2). Then the error E(f, R) may 
be written in the form 

(1) E(f, R) = f fi Cs)Ks(s) ds 

where K"(s) = -E(f,, R) for 0 < s < 1. 
The function K&(s) can be explicitly calculated when R and n are known. For 

example, if R is the midpoint rule, then J = 0, wo = 1 and x0 = i. For n = 1, 

K1 (s) = - S if 0 O! S < 2 s 

= 1 -s if 2 < S < 1. 

In the general case, 
k 

(2) KR(s) =(-1'sn/n! + E wi(xi - s)R/(n - 1)! 
i-o 

when xk < s < x,+1. If xo > 0 or if x, < 1, then similar formulas may be obtained 
for the intervals 0 < s < xo and xJ < s < 1. In particular, (2) shows that Kn is of 
class L'(0, 1) for all numbers p in the interval 1 ? p < co. Therefore, Theorem 1 and 
the Holder inequality imply the following result. 

COROLLARY 1. Assume the hypotheses of Theorem 1. If fi') I LV(O, 1) and if 
lip + l/q = 1, then 

(3) IE(f, R)I ? {f IK,(s)1I ds} If (n(s)IQ ds} < q < o) 

with similiar formulas for the cases q = 1 and q = o. 

In order to simplify the notation, introduce the L' norms 
B I /P 

(4) l IfIIP(AB) { J f(t)j| dt (1 p < cx) 

and a similar norm when p = + co. When (A, B) is the standard interval (0, 1), then 
the interval designation will be dropped. Thus, one has 

(4.1) 1 
= K.1 | - I Kn(t) Idtj (1 < P < c) 

and 

(4.2) l l K.1 =- max{ I K(s): 0 ? s < 1). 
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In this notation, (3) reads 

I E(, R)g I_ I Knll Il~~l 

In general, the calculations of the L' norms of Kn may be difficult if 1 ? p < co 
Since the number I IK& I. is easy to obtain numerically, then it may be convenient to 
use the estimate IIK. I I I IK.I I If this is not sufficient, then it is possible to obtain 
a universal estimate under the additional hypothesis (A3). 

COROLLARY 1*. Assume the hypotheses of Theorem 1. If fin) E LV(O, 1) and 
I/p + l/q = 1, then 

(3') JE(f, R)J [n| i~~ < < |Kn||. 11fz11a 

If in addition (A3) is true, then IKn II. < (n + 1)/n! 
Proof. Only the last statement needs further proof. Assumptions (A2) and (A3) 

imply that A w, = 1. For k = 0(1)J and for s in the interval xk ? s < x,+1, 
Eq. (2) implies that 

k 

IKj(s)I < 1/nt! + E w,/(n - 1)! 
i-o 

< I/n! + ( wij (n - 1)! = (n + I)/n!. 

If x0 > 0, then IKn(s)l :5 1/n! < (n + 1)/n! in the interval 0 < s < x0. Similarly, if 
x, < 1 and if xr _ s < 1, then IKn(s)I < (n + 1)/n!. Q.E.D. 

These basic results are easily extended to general intervals and to compound rules. 
Given an interval a < t < a + B, one can use the transformation r = a + Bt to 
compute 

a+ B rl J 

F(r) dr = B F(a + Bt) dt B E: wF(a + Bx,). 

For example, if (R) is the midpoint rule R(f) = fQf), then one can replace B by h and 
write 

Ja+h 

F(r) dr hF(a + h/2) 

in the usual way. If (R) is Simpson's rule, then we think of B = 2h and write 
ra+2h 

f 211 F(r) dr (h/3){ F(a) + 4F(a + h) + F(a + 2h)} . 

COROLLARY 2. Assume (A2) is true, F & C- [a, a + B] and F'") is absolutely 
continuous on a < t ? a + B. Then all the following statements are true. 

a. The error E = fa+B F(t) dt - B , wF(a + Bxj) may be written in the form 

n+ 
(s - a) (n) S E = Bf K.( B )F~( ds 

where K"(s) is the function given in Theorem 1 above. 
b. If F`) E L2(a, a + B), if I/p + l/q = 1 and if I IjKn & is the L' norm of K& 

over the interval [0, 1] (see (4.1)), then 
, a+ B |1/a 

. 
EJ :5 B"+' 

1/" 
I I 

__ 
12 F 

S anvW 



510 ALAN FELDSTEIN AND RICHARD K. MILLER 

c. If, in addition to the hypotheses listed above, (A3) is also true, then 

a+B l/ 
{El ? Bn+ /V(n + 1)/n! {fa+ jF(n)jl ds} I 

Proof. By Theorem 1 above 

1*1 J 

E = B F(a + Bt) dt - B I wjF(a + Bxj) 
j-O 

= B f Kn(s){d'F(a + Bs)/ds'} ds 

1 

= Bn+' f K,,(s)F In(a + Bs) ds 

a+B 

B" f Kn S a)F(n)(S) ds 

This proves a. Part b follows from part a and a change of variables: 

{j+ K (~ B a) ds}i= {JO IKn(s)I"B ds} = B" 'IIKBII. 

Part c follows from b since IlK.I_ I K l.:! _ (n + 1)/n!. Q.E.D. 
Now, consider a compounding of the rule R over an interval 0 ? t < T. Let 

T = NB where B > 0 and where N is an integer larger than one. If R is compounded 
N times over [0, T1, then 

N-1 j 

(N X R) N X R(f) =E Bwjf(Bx, + kB)} 

Let EN(f) = fT f(t) dt - N X R(f) be the error. 
COROLLARY 3. Suppose (A2) and (A4) are true. Then all of thefollowing statements 

are true: 
a. E(t) of (n)(t)f(t) dt where Kn(t) = Kn(t/B - k) on kB ? t < (k + 1)B. 
b. If f (n) C L"(0, T), I /p + l/q = 1 and IjK I I is defined as in (4.l)-(4.2), then 

IEv(~ < gnTl/p IIK. I 1 lif tn)laT 

c. If in addition (A3) is true, then 

EN(f)I ? {BnT'lp(n + 1)/n! } I if () I Ia(o, T) . 

Proof. Write the error in the form 

N-1 ( hcB+B J 

ENv(f) = E f(t) dt- I Bwjf(B(x, + k))} 
kO kB j- 

and then apply Corollary 2a: 

N-i kB+B T 

EN(f) - , Bn f+ fn)(t)Kn(t/B - k) dt = B n T( (t)En(t) dt. 
k-O kB 
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Since 1?,(t) is periodic of period B on 0 c t < T, then 

rT rB 

JI (t)jI dt - NJ I j(t)12 dt = NB] I K(t) Ip dt 

- Tt 11Knjjp}'. 

Therefore, 
T l/af T Vv/ 

B-n jEg(f)j ? {fI /(t)j' dt} Ij (t)j dt}d 

("II jjq la(0 T) T 2jj I K.II P. 

If (A3) is true, then jIK.jj2 < I KI&I1 < (n + 1)/n!. Q.E.D. 
Example 1. Consider f'tl'2 dt approximated by the trapezoidal rule. In this case, 

B = h, T = Nh = 1, it = 1 and K1(s) = -son the interval O ? s < 1. Therefore, 

1 rl rl~ ~ ~ ~~~~~/2 r1 
f jK1(s)Il ds f J - sjp ds = f 1 - sjP ds + f 4 - si ds 

o o o 1~~~~~~~~~~~~~~~~/2 
1l/2 1l/2 

Sp ds + Sp ds = 2-(p + 1)-. 

Since f'(t) = (2tl/2)-l E LV(, 1) for 1 ; q < 2, then Corollary 3 implies that 

IEN (tl/2)I 1 h2-N(p + l)-Y/{f (2tl/2)- dt} 

(5) 
= {2l/Q-2(p + l)-"/P(2 - q)~l/Q} 

for 1 < q < 2. If q = 1, then 

(6) EN(t"2)I < h(') f(2t112-1 dt = h/2. 

Part c of Corollary 3 implies an even more pessimistic estimate IEN(t1/2)I S 2h. 
Section 3 will produce estimates which are O(h312). 

3. Refined Estimates. 
Definition 1. A function f is said to be weakly singular of order v if and only if 
a. f eC(O, T] if v = O or f E C'1[o, T] n C'(O, T] if v > 1, 
b. for each e > 0 the function f("'(t) is absolutely continuous on the interval 

e ? t ? T, and 
c. the function a, defined by 

(7) a, (t, f) = If1' (T)I + I fw+ '(s)I ds 

is of class L'(O, T). 
For any integer N _ 0, let WS(v) denote the set of all functions f which are weakly 

singular of order v. For example, if 0 < r < 1 and T - 1, then f(t) = log t and 

g(t) = sin (F7) are in WS(O). In these two cases, ao(t, f) =-log t and cio(t, g) < C7. 

In general, f(t) = t77, 0 < r < 1, is of class WS(v) so that each class WS(v) is not 
empty. 
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LEMMA 1. Iff G WS(v), then If ̀)(t)I < a,(t, f) on the interval 0 < t < T. Moreover, 
a,(t, f) is nonincreasing in t. 

Proof. Fix f in WS(v). The absolute continuity of f "' implies that 

f(y)(t) = f -P f((T) P (+l)(s) ds 

for any t in the interval 0 < t ? T. This formula and (7) imply that 

jf(")(t)j < Ijf (p(T) + j f ''(s)j ds = a,(t, f) 

when 0 < t ? T. 
From (7) it follows that a, is absolutely continuous on e ? t ? T and that 

-r,(t, f) = -jf (' '(t)I :! O a.e. 
dt 

Thus, a, is nonincreasing on the interval e ? t ? T. Since e > 0 can be made arbi- 
trarily small, the proof is complete. Q.E.D. 

THEOREM 2. Suppose (A2) is true for some integer n = v + I where v ? 1. If 
f e WS(v) then the error E(fJ) obtained by applying the compound rule (N X R) 
satisfies the inequality 

(8) IEg(f)l S B' fav(t, f) dt{IIKI1c + 1IIK,+1ilI.} 

In particular, if (A3) is also true, then 

(9) IEN(f)jI :! BY(2 + 3v + 3)/(v + 1)! { a ,(t, f) dt}. 

Proof. Write E = E(f) in the form 
B J 

E = {j f(t) dt - E Bwjf(Bxj)} 

T-B Nr-2 

+ f(t + B) dt- E Bwif(B(xi + (k + 1)))J 

Apply Corollary 3b to the first summand with n = v, q = 1, and to the second 
summand with n = v + 1, q = 1: 

JEJ ;- B'IIKIIO {j1 ; if '(t)l dt} + B'+'IIK,+1ll, {T jf(p+1)(t + B)l dt}. 

Now use (7) and Lemma 1: 
B 

El ?B'jKr 1f ac(t f) dt + Bv+1Il K,+ Ill ,{ay(B, f) - a,(T, f)}. 

Since a,(t, f) is nonnegative and nonincreasing in t, then 
(B 

- Bla,(B, f) - a,(T, f)j _!! Boa,(B, f) :! a, t(t, f) dt. 
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Therefore (8) follows. The estimate (9) follows from (8) and the inequality 
jKnjjc ? (n + 1)/n!. Q.E.D. 

Example 2. Consider fIt1'2 dt approximated by the trapezoidal rule. (The same 
example as at the end of Section 2.) Then B = h, T = 1 = Nh, n = 2, v = l and 

KI,(s) = - s, K2(s) = s(s - 1)/2. 

It is easy to compute a,(t) 't-12 and f'al(t) dt = h"12. Therefore, (8) implies that 

IEN(tll2)I ? ht' + 1h"1/2 = h3/2. 

Even less computation is required to see that (9) implies 

I EN(t112) i ? 7h3/2. 

Either result shows that the error is of order 0(h"/2) as h = 1/N -+ 0. The estimates 
in Section 2 were o(h). 

Theorem 2 above cannot be applied if the integer n in hypothesis (A2) is equal to 
one but f E WS(v) for some integer v > 1. However, such situations are already 
covered by Corollary 3 above. For example, if the midpoint rule M is applied to 
f(t) = t1/2, then, by Corollary 3, the error is 0(h"l2). The reverse situation v = 0 and 
n 2 I is more complicated. This situation is the topic of the next section. 

4. Estimates when v = 0. If f E WS(v) and - = 0, then t = 0 may be an un- 
bounded point of f. In this case, the compound rule (N X R) need not be well-defined. 
Even if (N X R) is well-defined (e.g. if rule R is open at t = 0), the previous estimates 
do not apply. One simple method of handling both of these problems is to avoid the 
singularity at t = 0. This idea leads to the following approximation rule: 

Let T = NB where B > 0 and N > I is an integer. Compute 
N-1 ( orJ 

RA(T, =E 2 Bwjf(xjB + kB)} 
k;1 j-O 

and let EA(j, N) = error. 
Rule RA will be called the method of "avoiding the singularity." This rule is the 

usual compound rule except that no attempt is made to approximate on the initial 
segment [0, B]. 

THEOREM 3. Suppose (A2) is true for n = 1. Iff E WS(O) then 
B 

(10) IEA(f, N)I ? {l + 11KI11A ao(t, f) dt. 

In particular, if (A3) is also true, then 

rB 

(11) IEA(f, N)l < 3 f ao(t, f) dt. 

Proof. Define fB(t) = f(t + B) on 0 ?< t ? T - B. Then the error EA = EA(f, N) 
has the form 

A fB 
EA -|f(t) dt + EN-J~fB), 
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where Ek(g) is the error for the usual compound rule. Apply Corollary 3b with 
n =q 1: 

rB 
71 -B 

tEAl < f f(t)l dt + BllKll11 fJ (fB)(t) dt 

rB rT 

= fE lf(t)l dt + BllK1ll If l'(t)l dt. 

Use Lemma 1 and the definition (7): 

B B 
lf(t)l dt< ao(t, f) dt, 

and 

J If'(t)l dt= ao(B, f)- ao(T, f) 
B~~~~~~~~~~~~ 

_ (1/B)BaO(B, f) 5 (1/B) | ao(t, f) dt. 

This proves (10). 
If (A3) is also true, then 1K ll0, < (1 + 1)/1! = 2. Therefore, (11) follows 

immediately from (10). Q.E.D. 
Example 3. If f(t) = t-r, 0 < r < 1, then it is easy to compute ao(t, f) = t-r. 

Theorem 3 predicts EA = O(B7-r) as B -+ 0. If f(t) = t-' sin (tC'), where r, v > 0 and 
r + v < 1, then, by Theorem 3, one has at least EA = S(B1-7-'). If f(t) = t- sin (log t) 
where 0 < r < 1, then EA = O(B"'), at least. 

5. Convolution Integrals. Consider a convolution integral 

(12) 1 = f (T - s)g(s) ds = f f(s)g(T - s) ds. 

THEOREM 4. Suppose (A2) is true for n = v + 1. In addition, assume 
i. f E WS(v) where v > 1 and 

ii. g C C[O, 1] n C (0, 7] with gC+l') C L'(0, 7). 
Define F(t) = f(t)g(T - t) on 0 < t < T. Let L > 0 be a boundfor each of the functions 

If(t)l, g(t)I, Ig'(t)J, Ig, g(t)l on the interval 0 < t < T. Then the error EN(F), 
obtained by applying the compound rule N X R to F, satisfies the estimate 

IEN(F)I < LB'(||Kv||. + 11KV+ 11(1) 

a{f (t, f) dt + Bf (|gcv+1)(S)j + t(( 1+) fi)(s)I) ds} 

where (k) k!/j!(k - j)!. 
Proof. For any number s in the interval 0 < s ? T, one has 

F(F+l)(s) = El(-I)i(V + l)fcv+-i')(s)gi')(T - s). 
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Therefore, if L is the bound defined above, 

jF( '+ )(s)j L{ ( + 1) I(t+-i')(s)I} + L g"+)(T - s)j. 

This shows that F E WS(v) and 

a,(t, F) 5 Lct,(t, t) + L f {lg(p+')(T - s)I + I ( +1) Iti)(s)I} ds. 

Apply Theorem 2: 
rB 

IEN(F)I ? B'(IIK,110 + IIK,+iIIc) a,(t, F) dt 

< LB'(j|K,jj. + IIK,++II,) 

*{fJa,(t, f) dt + f T g( '+')(T - s)I + ( +1) IIe"(s)I) ds dt} 

By nonnegativity and Fubini's theorem, 

J| f . (Ig(P+1)(T -s)I + ( t ) IIf M(s)I) ds dt 

rB rT rT rB 

< J EJ TJ) ds dt J J dt ds 

= B J g(P+1)(s)l + + 
( + ) I i(' )M ) ds, Q.E.D. 

The next set of results follow immediately from Theorem 4. 
COROLLARY 4. Suppose the hypotheses of Theorem 4 are true. Pick any number 

M1 > 0 which satisfies the estimate 
b 

(13) b _ Ml a ,(t, f) dt (O < b ::- T. 

Then IEN(F)I < MB' f'" a,(t, f) dt where 

M = L(IIKII| + j|K,+1jj.) 

(14) I+ MJf (Igg(+1)(S)I + E ( j ) fe'(s)I) ds} 

COROLLARY 5. Suppose the hypotheses of Theorem 4 are true. For any integer 
N > O let B = T/N and define 

,i = JI f(s)g(jB - s) ds (J = 1(1)N). 

Let Ej be the error in approximating I, by the compound rule (j X R). Then 

IEj < MB' a, (t, f) dt (J = l(l)N), 

where M is the constant defined by (14). In particular, M is independent of N ? I 
and of j = l(l)N. 



516 ALAN FELDSTEIN AND RICHARD K. MILLER 

A similar analysis is obtained when ' = 0. 
THEoRw 5. Suppose (A2) is true for n = 1. Assume f E WS(O), g is absolutely 

continuous on O < t ? T and L is a bound on Ig(t)J for O : t ; T. Define 

F(s) = f(s)g(T-s) (O < t S T). 

Then, the error EA, obtained by applying the method avoiding the singularity to F, 
satisfies the estimate 

IEA(I, N)j I (1 + 11K1110)(L + f jg'(s)l ds) f ao(t, f) dt. 

Proof. Since F'(s) = f'(s)g(T - s) - f(s)g'(T -s), then F E WS(O) and 

jF'(s)l 5 L jf'(s)l + jf(s)j jg'(T -s)j 

? L If'(s)l + ao(s, f) Ig'(T - s)l 

on 0 < s < T. In particular, then 

ao(t, F) < Lao(t, f) + ao(s, f) Ig'(t -s)l ds. 

Apply Theorem 3: 
rB 

IEAI S (1 + IIKII 1If) ao(t, F) dt 

:5 (I + IIKiIc)(Lf ao(t, f) dt + ff ao(sI) jg'(T -s)j ds dt) 

Since ao(t, I) is nonnegative and monotone in t, then 
le eT rB r 

f fJ' cao(s, f) Ig'(T - s)l ds dt : ao (t, f) f g'(T - s)l ds dt 

? ( o(t, f) dt)(1 jg'(s)l ds). Q.E.D. 

COROLLARY 6. Assume the hypotheses of Theorem 5. For any integer N > 0, let 
B = TIN and define 

rfB 

= Jf(s)gjB - s) ds (j = 1(1)N). 

Let E4Cj) be the error obtained in approximating Ii by the rule R,. Then 

IEI : (1 + lKR10l)(L + f jg'(s)l ds) f ao(t, f) dt, 

where L is the bound defined in Theorem 5. (This estimate is independent of N and j.) 

6. Numerical Examples. The results in Sections 3 and 4 were verified by 
numerically integrating the function f(t) = at" sin (Cb) for various values of the 
parameters a, a and b with -1 < a < 1 and 0 ? b < 1. These computations were 
performed' on a CDC 6600 computer at the Lawrence Radiation Laboratory, U. S. 
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Atomic Energy Commission. They were designed and implemented with the help 
of Dr. Fred Fritsch. 

Some computations were recomputed in double precision. The numerical evidence 
obtained in this way suggests that round-off errors had no effects on the calculations 
over the full range of values of h. Experiments were made using both the method of 
"ignoring" the singularity (see [3]) and the method of "avoiding" the singularity 
(Section 3 above). "Avoiding" is easier to handle theoretically while "ignoring" was 
a bit easier to program. Ignoring gives slightly better accuracy for monotone in- 
tegrands while avoiding may be a bit better for oscillating integrands. 

Table 1 contains results for the integral 

(15) I= (1 + a) f ta dt = 1, 

for the value a = -. Simpson's rule was employed with h = 2k and k = 1(1)15. 
The constants C(h) in Table 1 were computed by putting the error in the form 
E(h) = C(h)hl+a. Then 

(16) C(h) = E(h)/hl+a. 

These values of C(h) appear to be converging as h -> 0. As a second check on the 
possible asymptotic form of the error, one can assume that E(h) = Cohl (at least 
asymptotically). Then p may be calculated using the formulas 

=E(h) - E(2h) log Q 
(17) Q E(h/2) - E(h) ' P log 2 

(One can also calculate C0 in this manner.) The last column in Table 1 is computed 
using (17). 

TABLE 1. f(t) =.752 

k Error C p 

1 - .36655 - .61645 
2 - .21663 - .61271 
3 - .12847 - .61112 .76609 
4 - .07631 - .61045 .75692 
5 - .04535 - .61016 .75293 
6 - .02696 - .61005 .75123 
7 - .01629 - .61000 .75052 
8 - .00953 - .60997 .75022 
9 - .00567 - .60995 .75009 

10 - .00337 - .60996 .75004 
11 - .00200 - .60996 .75002 
12 - .00119 - .60996 .75001 
13 - .00071 - .60996 .75000 
14 - .00042 - .60996 .75000 
15 - .00025 - .60996 .75000 



518 ALAN FELDSTEIN AND RICHARD K. MILLER 

Table I indicates slow but monotone convergence. The error appears to have the 
form E(h) = C(h)h314 where C(h) -+ Co = -.60996 ... as h -- 0. This general be- 
havior is typical of the integrand (15) for 0 < jal < 1. For example, if a = .75 in 
(15), Simpson's rule gives much more rapid monotone convergence: 

S(2-5) = .99956, S(2-'0) = .99999 88, S(2-'5) = .99999 9997. 

In E(h) = C(h)h 175, the corresponding values of CQh) are: 

C(2-5) = .1878, C(210) = .2145, C(215) = .2265. 

The values of C(h) appear to be converging rather slowly. If a =-.99 in (15), then 
Simpson's rule hardly appears to converge: 

S(25) = .039, S(2-'0) = .072, S(2 5)= .104. 

On the other hand, the constant C(h) in the error term converges rapidly: 

C(2-') = .994438, C(2-2) = .994287, 

C(2-3) = .994284, C(2-4) = .994238, 

C(2-5) = .99423 596, C(2-6) = .99423 534 

and 

C(2_k) = -.99423 5131 fork = 10(1)15. 

TABLE 2. f(t) =t- 1/2 sin (t- 1/4) 

k 2k X T 

1 .8666 6 1.5951 11 1.5103 
2 1.1810 7 1.5696 12 1.5211 
3 1.3948 8 1.5319 13 1.5157 
4 1.5252 9 1.5034 14 1.5102 
5 1.5867 10 1.4975 15 1.5164 

Table 2 contains results (using the trapezoidal rule) for the integral 

(18) I(b) = C1/2 sin(iCb) dt 

where b = .25. Convergence is very slow and is not monotone. No asymptotic 
formula E(h) Coh' is discernible using either of the two tests (16) and (17). On the 
other hand, for the small value b = .01 convergence is monotone at a rate E(h) = 

C(h)h 49 where C(h) is a slowly varying function of h: 

C(2-') = 1.286, C(2-5) = 1.246, C(2-?)= 1.228. 

At the opposite extreme b = .49, convergence is very slow 

T(2-5) = .9477, T(2-10) = .9972, T(2-15)= 1.0232, 
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convergence is not monotone and no approximate asymptotic error formula is 
apparent. 

Remark. The exact value of the integral I(b) is a bit complicated to compute. 
A simple change of variables may be used to put (18) in the form 

co 
(18') I(b) = b-' U- 1-l/(2b) sin u du = b-S(l, -(2bY'), 

where 

S(x, y) = uv' sin u du 

is Bohmer's generalized Fensel integral (see Bateman Project [12, Volume II]). The 
series 

S(x, y) = P(y) si -Y (I)mXim+l+y Sx = 
n2 
)- (2m + I + y)(2m + 1)! 

works fairly well if y is not a negative integer. For example, only a few terms of this 
series are necessary to compute I(.49) = 1.023006. When y is a negative integer, one 
can utilize the expansion 

S(x, y) = xv{ P(x) cos x - Q(x) sin x} 

where 

P(X) = 
a 

(-1)m(1 - a)2mX 2m,1 + O(xI-2m-1), 

Q(X) E ( 1)M(1 - 0)2-X 2m + O(IXV-2m-2) 
Me- 

and (a). = r(n + a)/r(a). For example, this expansion and a quadrature yield 
p'0 

I(.25) = 4 UX 3 sin u du + 4S(10, -2) 1.51412. 
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